艺术在公共空间中的放置可能会对谁感到归属感产生重大影响。在城市中,公共艺术传达了其利益和文化受到青睐的传播。在本文中,我们提出了一种具有局部约束的图形匹配方法,以构建一个以支持包容空间的方式选择公共艺术的策展工具。我们通过利用Schelling的隔离模型来开发成本矩阵。使用成本矩阵作为输入,通过投影梯度下降来解决优化问题,以获得软分配矩阵。我们讨论正式化术语以设置策展约束。我们的优化计划通过满足最低代表和暴露标准,将艺术品分配给公共空间和墙壁,以取消优先级的“小组内”偏好。我们利用现有文献来为我们的算法输出开发公平度量。我们将塔夫茨大学作为测试台,我们评估方法的有效性,并从策展和公平的角度讨论其潜在的陷阱。
translated by 谷歌翻译
本文考虑了Barycentric编码模型(BCM)下的测量估计问题,其中假定未知的度量属于有限的已知测量集的Wasserstein-2 Barycenters集合。估计该模型下的度量等同于估计未知的Barycentric坐标。我们为BCM下的测量估计提供了新颖的几何,统计和计算见解,由三个主要结果组成。我们的第一个主要结果利用了Wasserstein-2空间的Riemannian几何形状,以提供恢复Barycentric坐标的程序,作为假设对真实参考度量访问的二次优化问题的解决方案。基本的几何见解是,该二次问题的参数是由从给定度量到定义BCM的参考度量的最佳位移图之间的内部产物确定的。然后,我们的第二个主要结果建立了一种算法,用于求解BCM中坐标的算法,当时通过I.I.D进行经验观察到所有测量。样品。我们证明了该算法的精确收敛速率 - 取决于基本措施的平稳性及其维度 - 从而保证其统计一致性。最后,我们证明了BCM和相关估计程序在三个应用领域的实用性:(i)高斯措施的协方差估计; (ii)图像处理; (iii)自然语言处理。
translated by 谷歌翻译
Discriminative features extracted from the sparse coding model have been shown to perform well for classification. Recent deep learning architectures have further improved reconstruction in inverse problems by considering new dense priors learned from data. We propose a novel dense and sparse coding model that integrates both representation capability and discriminative features. The model studies the problem of recovering a dense vector $\mathbf{x}$ and a sparse vector $\mathbf{u}$ given measurements of the form $\mathbf{y} = \mathbf{A}\mathbf{x}+\mathbf{B}\mathbf{u}$. Our first analysis proposes a geometric condition based on the minimal angle between spanning subspaces corresponding to the matrices $\mathbf{A}$ and $\mathbf{B}$ that guarantees unique solution to the model. The second analysis shows that, under mild assumptions, a convex program recovers the dense and sparse components. We validate the effectiveness of the model on simulated data and propose a dense and sparse autoencoder (DenSaE) tailored to learning the dictionaries from the dense and sparse model. We demonstrate that (i) DenSaE denoises natural images better than architectures derived from the sparse coding model ($\mathbf{B}\mathbf{u}$), (ii) in the presence of noise, training the biases in the latter amounts to implicitly learning the $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ model, (iii) $\mathbf{A}$ and $\mathbf{B}$ capture low- and high-frequency contents, respectively, and (iv) compared to the sparse coding model, DenSaE offers a balance between discriminative power and representation.
translated by 谷歌翻译